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Abstract: The sensitivity of the climate system to an imposed radiative imbalance remains the largest 

source of uncertainty in projections of future anthropogenic climate change.  Here we present further 

evidence that this uncertainty from an observational perspective is largely due to the masking of the 

radiative feedback signal by internal radiative forcing, probably due to natural cloud variations.  That 

these internal radiative forcings exist and likely corrupt feedback diagnosis is demonstrated with lag 

regression analysis of satellite and coupled climate model data, interpreted with a simple forcing-

feedback model. While the satellite-based metrics for the period 2000-2010 depart substantially in the 

direction of lower climate sensitivity from those similarly computed from coupled climate models, we 

find it is not possible with current methods to quantify this discrepancy in terms of the feedbacks 

which determine climate sensitivity.  It is concluded that atmospheric feedback diagnosis of the 

climate system remains an unsolved problem, due primarily to the inability to distinguish between 

radiative forcing and radiative feedback in satellite radiative budget observations. 
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1. Introduction and Background 

The magnitude of the surface temperature response of the climate system to an imposed radiative 

energy imbalance remains just as uncertain today as it was decades ago [1].  Over twenty coupled 

ocean-atmosphere climate models tracked by the Intergovernmental Panel on Climate Change (IPCC) 

OPEN ACCESS 



Remote Sens. 2011, 3                            

 

 

2 

produce a wide range of warming estimates in response to the infrared radiative forcing theoretically 

expected from anthropogenic greenhouse gas emissions [2]. 

From a modeling standpoint, this lack of progress is evidence of the complexity of the myriad 

atmospheric processes that combine to determine the sign and magnitude of feedbacks.  It is also due 

to our inability to quantify feedbacks in the real climate system, a contentious issue with a wide range 

of published feedback diagnoses [1] and disagreements over the ability of existing methods to 

diagnose feedback [e.g. 3, 4]. 

Spencer and Braswell [5, hereafter SB10] discussed what they believed to be the primary difficulty 

in diagnosing feedback from variations in the Earth's radiative energy balance between absorbed 

shortwave (SW) solar radiation and thermally emitted longwave (LW) infrared (IR) radiation.   SB10 

attributed the difficulty to the contamination of the feedback signature by unknown levels of time-

varying, internally generated radiative forcing; for example, ‘unforced’ natural variations in cloud 

cover.   

In simple terms, radiative changes resulting from temperature change (feedback) cannot be easily 

disentangled from those causing a temperature change (forcing).  

Much can be learned about the interaction between radiative forcing and feedback through a simple 

time dependent forcing-feedback model of temperature variations away from a state of energy 

equilibrium, 

 

   Cp d∆T/dt = S(t) + N(t)  -  λ∆T         (1) 

 

Eq. 1 states that time-varying sources of non-radiative forcing S and radiative forcing N cause a 

climate system with bulk heat capacity Cp to undergo a temperature change with time away from its 

equilibrium state (d∆T/dt), but with a net radiative feedback 'restoring force' (-λ∆T) acting to stabilize 

the system.  For the interannual temperature climate variability we will address here, the heat capacity 

Cp in Eq. 1 is assumed to represent the oceanic mixed layer.   

Radiative forcings (N) of temperature change could arise, for example, from natural fluctuations in 

cloud cover which are not the direct or indirect result of a temperature change (that is, not due to 

feedback) [6].  Examples of non-radiative forcing (S) would be fluctuations in the heat exchange 

between the mixed layer and deep ocean, or between the mixed layer and the overlying atmosphere.  

Importantly, satellite radiative budget instruments measure the combined influence of radiative forcing 

(N) and radiative feedback (- λ∆T) in unknown proportions. 

Although not usually considered a feedback per se, the most fundamental component of the net 

feedback parameter λ is the direct dependence of the rate of IR emission on temperature, estimated to 

be about 3.3 W m
-2

 K
-1

 in the global average [7].  This 'Planck' or 'Stefan-Boltzmann' response 

stabilizes the climate system against runaway temperature changes, and represents a baseline from 

which feedbacks are traditionally referenced.  Positive feedbacks in the climate system reduce the net 

feedback parameter below 3.3, while negative feedbacks increase it above 3.3.  Here we will deal with 

the net feedback parameter exclusively, as it includes the combined influence of all climate feedbacks, 

as well as the Planck effect. 

The larger the net feedback parameter λ, the smaller the temperature response to an imposed energy 

imbalance N will be; the smaller λ is, the greater the temperature response will be.  A negative value 
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for λ would indicate a climate system whose temperature is unstable to radiative forcing.  The coupled 

ocean-atmosphere climate models tracked by the IPCC have diagnosed long-term net feedback 

parameters ranging from λ = 0.89 for the most sensitive model, MIROC-Hires, to λ =1.89 for the least 

sensitive model, FGOALS [7].  Since this range is below the Planck response of 3.3 W m
-2

 K
-1

, all of 

the IPCC models therefore exhibit net positive feedbacks.  Also, since all climate models have net 

feedback parameters greater than zero, none of the climate models are inherently unstable to 

perturbations.   

It is worth reiterating that satellite radiative budget instruments measure the combined effect of the 

radiative terms on the RHS of Eq. 1, that is, the radiative forcing term N and the feedback term (-

 λ∆T).  That the presence of N can have a profound impact on feedback diagnosis is easily 

demonstrated with a simple time dependent model based upon Eq. 1.  If we assume Cp consistent with 

a 25 m deep oceanic mixed layer, a net feedback parameter λ = 3, and a sinusoidal forcing with period 

of one year, the temperature response shown in Fig. 1 results. 

Figure 1. Simple forcing-feedback model demonstration that satellite radiative budget 

instrument measurements of Net radiative flux (forcing + feedback) are very different from 

what is needed to diagnose the net feedback parameter (feedback only). 

 

 

In response to radiative forcing, the model ocean warms, which in turn causes a net radiative 

feedback response.  Significant to our goal of diagnosing feedback, the net feedback response to a 

temperature change is always smaller than the radiative forcing which caused it, owing to the heat 

capacity of the system. The ocean mixed layer causes a substantial time lag before the resulting 

temperature change can restore radiative energy equilibrium, which means the net radiative feedback 

restoring force is always smaller than the radiative forcing until radiative equilibrium is once again 

achieved. 

If the only source of radiative variability was feedback, then regression of the time series (-λ∆T) 

against the temperature time series (∆T) in Fig. 1 would yield an accurate feedback diagnosis with the 
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regression slope λ = 3 W m
-2

 K
-1

.  But the presence of time varying radiative forcing in Fig. 1 has a 

very different signature than that of feedback, yet it is the sum of the two which the satellite measures.  

 As shown by SB10, the presence of time-varying radiative forcing decorrelates the co-

variations between radiative flux and temperature, due to the time lag caused by the heat capacity of 

the system.  Low correlations lead to regression-diagnosed feedback parameters biased toward zero, 

which corresponds to a borderline unstable climate system.  We believe that the low correlations 

associated with previous feedback diagnoses with satellite data are themselves prima facie evidence of 

the presence of radiative forcing in the data. 

In the real climate system, it is likely there is almost always a time-varying radiative forcing 

present, as various internally-generated changes in clouds and water vapor oscillate between positive 

and negative values faster than the resulting temperature changes can restore the system to radiative 

equilibrium.  This means that feedback diagnosis will, in general, be contaminated by an unknown 

amount of time-varying internal radiative forcing N.  If those forcings were known, they could be 

subtracted from the measured radiative flux variations before diagnosing feedback, e.g. as has been 

done for the feedback response of the coupled climate models to transient carbon dioxide forcing [7]. 

 Central to the difficulty of feedback diagnosis is the very different time-dependent relationships 

which exist between forcing and temperature, versus between feedback and temperature.  While there 

is a substantial time lag between forcing and the temperature response due to the heat capacity of the 

ocean, the radiative feedback response to temperature is nearly simultaneous with the temperature 

change.  This near-simultaneity is due to a combination of the instantaneous temperature effect on the 

LW portion of λ (the Planck response of 3.3 W m
-2

 K
-1

), and the relatively rapid convective coupling 

of the surface to the atmosphere, which causes feedbacks from surface temperature-dependent changes 

in water vapor, clouds, and the vertical profile of temperature.  

While SB10 provided evidence that such radiatively-induced temperature changes do exist, and in 

general lead to an underestimate of the net feedback parameter, this view has been challenged [8, 

hereafter D10] with estimated cloud feedback from satellite observed variations in Earth’s radiative 

energy balance during 2000-2010.  D10 used the usual regression approach.  Further, D10 assumed 

that the temperature changes during 2000-2010 were not radiatively forced by the atmosphere, but 

non-radiatively forced through changes in ocean circulation associated with the El Niño/Southern 

Oscillation (ENSO) [9] phenomenon.  If D10 is correct that radiative forcing can be neglected (N(t) ≈ 

0), then satellite observed radiative variations would be dominated by feedback rather than forcing, 

and one should be able to diagnose feedback through regression of radiative variations against 

temperature variations.  

Here we will provide evidence that those temperature changes instead had a strong component of 

radiative forcing, with radiative accumulation preceding, and radiative loss following, temperature 

maxima. While SB10 used phase space analysis to demonstrate the presence of radiative forcing, here 

we will use lag regression analysis.  By examining regression coefficients between temperature and 

radiative flux at a variety of leads and lags, rather than at just zero time lag, we can identify behaviors 

of the climate system that otherwise cannot be discerned. 

First we will demonstrate what these lag relationships look like in the satellite observations and in 

the coupled climate models.  Then, we will explore with a simple forcing-feedback model of the 

climate system what the relationships mean in terms of forcing and feedback. 
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2. Time-Lagged Signatures in Observational Data and Coupled Climate Models 

2.1. Observational Data 

The CERES (Clouds and the Earth's Radiant Energy System) [10] radiative budget instruments on 

NASA's Terra satellite have provided globally distributed estimates of reflected solar shortwave (SW) 

and thermally emitted infrared longwave (LW) radiative fluxes on a daily basis since March 2000.  

Variations in SW are caused mostly by changes in cloud cover, particularly low clouds, while 

variations in LW are mainly caused by temperature, water vapor, and high clouds. 

We will use the same SSF Edition 2.5 monthly gridpoint radiative flux dataset used by D10, 

updated through June 2010, from which D10 claimed evidence for positive cloud feedback.  The SSF 

dataset also includes a calculation of the ‘Net’ flux, which additionally accounts for the effect of small 

variations in the solar constant during 2000-2010, 

 

    Net = S/4  - (LW+SW),      (2) 

 

where S is the top-of-atmosphere (TOA) incident solar radiation.  By convention, the LW and SW 

fluxes are positive upward (away from Earth), while the Net flux is positive downward (toward Earth).   

In the context of our analysis of anomalies (departures from the average annual cycle), note the only 

difference between (-Net) and (LW+SW) is the small interannual variation in the incident solar flux; 

otherwise, the two are equivalent, and are sometimes treated interchangeably.   

From the monthly gridpoint Net radiative fluxes in the 10+ year SSF Edition 2.5 dataset we 

computed monthly global area averages.  From the resulting time series of monthly averages we then 

computed monthly anomalies, where each month's anomaly is the departure from the ten-year (or 

eleven-year) average for that calendar month.  This allows us to examine year-to-year variations in the 

climate system.   

Global monthly anomalies in surface temperature were similarly computed from the HadCRUT3 

surface temperature dataset [11] between March 2000 and June 2010.  In addition to globally averaged 

anomalies, we also computed area average anomalies over the ice-free oceans, between 60°N and 

60°S, for all variables. 

2.2. Coupled Climate Model Data 

Global monthly anomalies in LW and SW fluxes, as well as in surface temperature, were also 

computed from the 20
th

 Century runs of the World Climate Research Programme's (WCRP's) Coupled 

Model Intercomparison Project phase 3 (CMIP3) multi-model dataset archived at PCMDI, for the 

years 1900 through 1999.  Because of the significant trends in the 20
th

 Century simulations, the 100-

year trend was removed from each anomaly time series in order to better isolate the interannual 

variability that will be compared to the relatively short (10 year) period of satellite data.  While we 

computed results for 14 of the models archived, here will present results for only the 3 most sensitive 

models (MIROC3.2-hires; IPSL-CM4; MIROC3.2-medres), and the 3 least sensitive models 

(FGOALS; NCAR PCM1; GISS-ER), where their sensitivity to transient carbon dioxide forcing was 

estimated by [7]. 
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2.3. Observations versus Coupled Climate Models 

The time series of observed monthly global HadCRUT3 surface temperature anomalies from March 

2000 through June 2010 is shown in Fig. 2a, while the LW, SW, and Net radiative fluxes from CERES 

are shown in Fig. 2b.  Note that the negative of the Net flux is plotted, so that its sign convention 

matches the individual LW and SW flux components, which is positive upward (away from Earth). 

Figure 2. Times series of monthly global average anomalies in (a) surface temperatures 

from HadCRUT3, and (b) radiative fluxes from Terra CERES SSF Edition 2.5, for the 

period March 2000 through June 2010.  All time series have a 1-2-1 smoother applied to 

reduce sampling noise. 

 

Lagged regressions were performed between the surface temperature and the Net radiative flux time 

series shown in Fig. 2, with the resulting regression coefficients shown in Fig. 3.  Computations for 

global anomalies (Fig. 3a) and anomalies based upon only data over the global ice-free oceans (Fig. 

3b) are shown separately. 
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Figure 3. Lead and lag regression coefficients between monthly surface temperature 

anomalies and Net radiative flux anomalies in observations versus coupled climate models 

for: (a) global averages, and (b) global ocean averages, 60°N to 60°S. 

 

One of the most obvious conclusions from Fig. 3 is that the satellite observations and climate 

models display markedly different behaviors, especially over the oceans which are of great interest in 

climate change studies due to their inherently long time scales of variability.  The differences in Fig. 3 

exist not just at zero time lag, which is where feedback estimates have previously been made, but for 

several months when radiative flux leads and lags temperature. 

Also, note the change in sign of the radiative imbalances in Fig. 3 depending upon whether 

radiation leads or lags temperature.  As we will see, this behavior gives us clues about the relative roles 

of forcing versus feedback in the data. 
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3.  Simple Model Simulations of Observed Behavior 

The effect of radiative (N) versus non-radiative (S) forcing on the lagged regression coefficients can 

be demonstrated by a simple model based upon Eq. 1.  This helps to explain the difference between the 

satellite-measured versus climate model signatures in Fig. 3.  We again ran the simple forcing-

feedback model with an assumed net feedback parameter of λ = 3 W m
-2

 K
-1

; and an ocean mixed layer 

depth of 25 m, a choice which requires some discussion.   

We found that the assumed mixed layer depth of 25 m is consistent with the average behavior of 

both the IPCC AR4 coupled climate models and the satellite observations on interannual time scales.  

Using Eq. 1, we estimated Cp from both the coupled climate models and the satellite data by regressing 

5-month trends (d∆T/dt) in the global average surface temperature anomalies against the 5-month 

average radiative imbalances, to get 1/Cp as the regression coefficient.  The resulting Cp values from 

14 IPCC AR4 models ranged from 11 m to 50 m, with a 14-model average of 27 m, while a similar 

regression on the 10+ years of satellite data revealed an equivalent mixing depth of 26 m, which 

supports our use of 25 m.  (Note that, since about 30% of Earth is land having comparatively 

negligible heat capacity, the equivalent mixing depth of 25 m implies an average ocean mixing depth 

of about (25/0.7=) 35 m for the interannual time scales addressed here.) 

For the radiative forcing N(t) we used a time series of normally-distributed monthly random 

numbers with box filter smoothing of 9 months to approximate the time scales of variations seen in the 

climate models and observations in Fig. 3.   A separate time series of random numbers without low 

pass filtering was used for the non-radiative forcing S(t).  This mimics what we believe to be 

intraseasonal oscillations in the heat flux between the ocean and atmosphere seen in the data [5, 12].  

The model time step was one month, and the model simulations were carried out for 500 years of 

simulated time. 

The lag regression results from the simple model are shown in Fig. 4 for (1) pure radiative forcing 

N, (2) pure non-radiative forcing S, and (3) a 70/30% mixture of both.  Note that only in the case of 

pure non-radiative forcing (dotted line), at zero time lag, can accurate diagnosis of the feedback 

parameter can be made.  As discussed above, this is because there is no radiative forcing present to 

contaminate the radiative feedback signal.  Again, this is the only type of forcing D10 assumed was 

causing the surface temperature variability during 2000-2010, an assumption which allowed neglect of 

the radiative forcing issues raised here and by SB10. 
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Figure 4.  Lag regression coefficients between temperature and radiative flux from the 

simple forcing-feedback model run for three forcing cases: pure non-radiative forcing 

(dotted line);  pure radiative forcing (dashed line); and a 70% radiative / 30% non-radiative 

forcing mixture.  A feedback parameter of 3 W m
-2

 K
-1 

and ocean mixing depth of 25 m 

were specified for all three simulations, which each ran for 500 years of simulated time. 

 

 

If the temperature variations are instead radiatively forced, the lag regression relationships are very 

different (dashed line in Fig. 4).  In that case, radiative gain precedes, and radiative loss follows, a 

temperature maximum, as would be expected based upon conservation of energy considerations.  

Significantly, the pure radiative forcing curve is most similar to the behavior seen in the coupled 

climate model output shown in Fig. 3, indicating the dominating presence of internal radiative forcing 

in those models.  

Finally, a mixture of 70% radiative and 30% non-radiative forcing (solid line in Fig. 3) produces lag 

regression coefficients that vary in a manner similar to the satellite data in Fig. 3.  This suggests that, 

while the temperature variations during 2000-2010 had a strong radiative forcing component, they 

were also influenced by more non-radiative forcing than is exhibited by the coupled climate models.  

In contrast, D10 assumed that non-radiative forcing dominated the climate variability measured by the 

satellite during 2000-2010. 

Thus, we must conclude that radiative forcing exists in the satellite observations, as evidenced by 

the radiative gain/loss couplet patterns seen in Figs. 3 and 4.  Diagnosis of feedback cannot be easily 

made in such situations, because the radiative forcing decorrelates the co-variations between 

temperature and radiative flux.  For example, no matter what feedback is specified when the simple 

model is only radiatively forced, the regression coefficient at zero time lag for a sufficiently long 

model simulation is always near-zero.  We believe this effect has led to low biases in previously 

diagnosed feedback parameters from satellite data. 

Determination of whether regression coefficients at various non-zero time lags might provide a 

more accurate estimate of feedback is beyond the scope of this paper; our preliminary work on this 
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issue suggests no simple answer to the question.  We conclude that the fundamental obstacle to 

feedback diagnosis remains the same, no matter what time lag is addressed: without knowledge of 

time-varying radiative forcing components in the satellite radiative flux measurements, feedback 

cannot be diagnosed from the co-variations between radiative flux and temperature. 

4.  Discussion and Conclusions 

 We have shown clear evidence from the CERES instrument that global temperature variations 

during 2000-2010 were largely radiatively forced.  Lag regression analysis supports the interpretation 

that net radiative gain (loss) precedes, and radiative loss (gain) follows, temperature maxima (minima).  

This behavior is also seen in the IPCC AR4 climate models.    

A simple forcing-feedback model shows that this is the behavior expected from radiatively forced 

temperature changes, and it is consistent with energy conservation considerations.  In such cases it is 

not possible to estimate a feedback parameter through current regression techniques.   

In contrast, predominately non-radiatively forced temperature changes would allow a relatively 

accurate diagnosis of the feedback parameter at zero time lag using regression since most radiative 

variability would be due to feedback.  Unfortunately, this appears not to be the situation in either the 

satellite observations or the coupled climate models. 

Yet, as seen in Fig. 2, we are still faced with a rather large discrepancy in the time-lagged 

regression coefficients between the radiative signatures displayed by the real climate system in satellite 

data versus the climate models.  While this discrepancy is nominally in the direction of lower climate 

sensitivity of the real climate system, there are a variety of parameters other than feedback affecting 

the lag regression statistics.   These include the amount of non-radiative versus radiative forcing, how 

periodic the temperature and radiative balance variations are, the depth of the mixed layer, etc., all of 

which preclude any quantitative estimate of how large the feedback difference is.   

Finally, since much of the temperature variability during 2000-2010 was due to ENSO [8], we 

conclude that ENSO-related temperature variations are partly radiatively forced.  We hypothesize that 

changes in the coupled ocean-atmosphere circulation during the El Niño and La Niña phases of ENSO 

cause differing changes in cloud cover, which then modulate the radiative balance of the climate 

system.  As seen in Fig. 3b for the ocean-only data, the signature of radiative forcing is stronger over 

the oceans than in the global average, suggesting a primarily oceanic origin.   

What this might (or might not) imply regarding the ultimate causes of the El Niño and La Niña 

phenomena is not relevant to our central point, i.e. that the presence of radiative forcing in satellite 

radiative flux measurements corrupts the diagnosis of radiative feedback. 
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