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Abstract

The following pages will examine the solar system’s dynamic interaction with its 

changing galactic environment as it orbits the center of the galaxy. Here we will attempt 

to quantify the effects that galactic tidal forces have on the Earth’s orbit over millions of 

years using a series of models. Then we will discuss the limitations of the models we 

used and describe avenues for future research into the field of galaxy-solar system 

interactions. 
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Introduction 

 Presented is a rigorous mathematical analysis of the solar system’s motion with 

respect to a varying local galactic tidal field strength. When immersed in a tidal field, a 

system of particles will separate and undergo tidal deformation. The space between the 

particles increases with the curvature of the gravitational potential. Recent observations 

of tidal tails on globular clusters near the galactic plane show that outer stars in the 

cluster are stripped off occasionally in the system’s motion with respect to the galactic 

plane, 2006[6]. Using the Sun and the Earth as our objects of interest, the mechanism for 

galactic tidal perturbation can be illustrated with the following thought experiment: 

 Imagine the potential of our galaxy as being described by a curved funnel that 

takes the form of a hyperbolic or logarithmic function rotated about the vertical axis. 

Next we can imagine the Sun as a marble rolling around in this potential in a Rosette-

shaped precessing elliptical orbit, typical of star orbits in spiral galaxies like the Milky 

Way[3]. Now imagine the Earth as a smaller marble that is attached to the Sun by a 

stretchable bond, keeping the planet attached to the Sun as it revolves around the center 

of the galaxy. When the Sun is at perigalacticon, the point in its orbit when it is closest to 

the galactic center, the slope of the potential is steepest and we should expect the spring 

to be more stretched than when the Sun is at apogalacticon, the point in its orbit when it 

is furthest from the galactic center. The stretch of the bond will contribute to an increase 

or decrease of the distance from the Earth to the Sun. 

The illustration of the galactic tidal mechanism provided here merely helps to 

introduce the topic and does not claim to represent concrete, physical descriptions of 

these types of galaxy-solar system interactions. A more concrete attempt will be made in 

the following pages by first defining mathematical expressions for both the solar orbit 

and the gravitational potential of the Milky Way galaxy, and then deriving expressions 

for the components of the galaxy’s tidal field. Using standard models of the Sun’s orbit, 

the solar system’s local galactic tidal field strength can be found as a function of time. 

Let us now begin our quest by first examining the solar system’s motion in the galaxy. 
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The Sun’s Orbit 

The Sun is one of many millions of stars that orbit the galactic center. Detailed 

calculations show that star orbits in typical spiral galaxies like the Milky Way tend to 

trace out a rosette like shape when viewed from above[3]. The orbits of stars like the Sun 

also exhibit a form of vertical oscillation with respect to the plane of the galaxy’s disk. 

Estimations for the orbital motion of the Sun are based on measurements of its 

galactocentric radius, R, its velocity with respect to other stars, and the galaxy’s  

gravitational potential ,Φ, which will be described in greater detail in the next section.  

The standard values for the Sun’s galactocentric radius and circular velocity are 

R � = 8.5kpc and VC = 220 kms-1[1]. Based on these values, we can define the local 

standard of rest, which is an orbit defined by these two quantities to give a circular, 

planar approximation to the orbit of the Sun in the galaxy. However, in addition to the 

Sun’s circular motion, it also moves with respect to the local standard of rest as a result of 

its oscillatory motion in the radial and vertical directions. The oscillatory motions of the 

Sun can be analysed in detail using epicycle approximations and tracing its position with  

 respect to a circular, planar orbit. In fact, it is the Sun’s motion relative to the local 

standard of rest that gives rise to the Rosette and Lissajous motions we see exhibited in 

Figures 2 and 3. 

For the calculations in this report, we used a particular model for the solar orbit 

with the ordinary (R,θ,z) cylindrical coordinate system with the galactic center as the 

origin. Where R is the distance from the origin, in the direction parallel to the plane of the 

galaxy and z is the distance above or below the plane of the galactic disk. Most of the 

parameters for the solar system’s motion were taken from the work of Frank Bash, 

1986[1] and are summarized in the table below:  

Table 1: Parameters for the Orbit of the Solar System, F.Bash, 1986[1]

C

min R
1

C max z
1

R min per
1

max gp
1

z

R 8.5 kpc e 0.07 P 237 Myr
z 15 pc R 8.4575 kpc P 154 Myr

V 220 kms R 9.7325 kpc P 66 Myr
V 9 kms z 76.8 pc t 15 Myr
V 12 kms z 76.8 pc t 2.1 Myr
V 7 kms

  
  

  
  
  

 
θ

−

−

−

−

= = =
= + = =

= = =
= − = − = +
= + = + = −
= +

�

�  
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R �  and z  are the coordinates for the Sun’s position in the galaxy at present, V� C 

is the circular velocity and VR, Vθ and Vz are the components of the Sun’s velocity with 

respect to the local standard of rest. The Sun’s orbit is given a value for the eccentricity, 

which we use to find the minimum and maximum values for the galactocentric radius, 

Rmin and Rmax. The vertical extremes, zmin and zmax, are the bounds of the Sun’s vertical 

oscillation above and below the galactic plane. PC and Pz are the circular and vertical 

oscillation periods respectively, and tper and tgp are the times of the closest perigalacticon 

passage and galactic plane crossings relative to the present. The Sun is currently 

approaching perigalaction, which Bash estimates this will occur 15 million years into the 

future. Also, according to Bash, the Sun passed through the galactic plane 2.1 million 

years ago and is moving in the +z direction towards its maximum height, which it will 

reach 14.6 million years into the future, near the same time it reaches perigalacticon. 

The only value in the table that was not provided by Frank Bash is PR, the 

anomalistic period of the Sun’s orbit, which is defined as the period of time between two 

successive perigalacticon passages. This information was required in order to completely 

define the Sun’s orbit and so a value of 154 million years was adopted, which is well 

within the range provided in Binney & Tremaine[3]. Using these parameters we can define 

the Sun’s equations of motion in parametric form: 

        (1) 

C

max min max min per R

max gp z

(t) (2 / P )t 2 t / 237
R(t) (R R ) (R R )cos(2 (t t ) / P )

9.095 0.6375cos(2 (t 15) /154)
z(t) z sin(2 (t t ) / P ) 0.0768sin(2 (t 2.1) / 66)

½ ½

      

θ π π
π

π
π π

= =
= + − − −

= − −
= + − = +

We can also rewrite the Sun’s planar motion in polar coordinates by isolating t in θ(t) and 

substituting this into R(t): 

 R         (2) ( ) 9.095 0.6375cos((237 30 ) /154)θ θ= − − π

 Figures 2 and 3 provide a representation of the Sun’s motion in the R,θ and R,z 

planes that are a little easier on the eyes, plotted using Mathematica. The first plot 

expresses the orbit that the Sun would trace out over the last 601 million years and up to 

the next perigalacticon passage, 15 million years into the future if viewed from a vantage 

point directly above the galaxy’s plane. As expected, this forms a Rosette shape just like 

typical star orbits in galaxies.  
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Figure 2: The Sun’s orbital motion in the R,θ plane from 601 million years ago to 15 

million years into the future, measured in kiloparsecs. The orbit traces out a Rosette 

shape around the origin, the galactic center.  

The second plot is a representation of the Sun’s motion with respect to a circular, 

planar orbit with the Sun’s circular velocity of 220kms-1. This is the typical path of a 

particle that is oscillating in two orthogonal directions at the same time, and thus 

represents the epicyclic motion of the Sun in the R and z directions. 

 6



 
Figure 3: The Sun’s orbit in the R,z plane from 601 million years ago to 15 million 

years into the future, measured in kiloparsecs. This represents the Sun’s motion 

with respect to the Local Standard of Rest. 

 

 The Solar System’s Orientation in the Galaxy

Before we go on to defining the galactic potential, it is worthwhile to calculate 

another important quantity that we will need later, the angle of inclination between the 

plane of the solar system and the galactic plane. We can do this by approximating the 

plane of the solar system as the ecliptic and measuring the angle between the North 

Galactic Pole (RA 12h51m, δ +27°7.7’) = (192.86°, 27.13°)[2] and the North Ecliptic Pole 

(RA 18h, δ +90-23°26.4’) = (270°, 66.56)[16]. This is performed by using spherical 
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trigonometry to transfom the NGP into ecliptic coordinates and subtracting β, the ecliptic 

latitude from 90° (NEP). 

sin β = sin δ cos ε - cos δ sin α sin ε 

β = arcsin[sin 27.13°cos 23.44°-cos 27.13°sin 192.86°sin 23.44°] 

= 29.81°, 150.19° 

Therefore, i, the angle of inclination between the ecliptic and galactic plane is  

90° - 29.81° = 60.21° 

This helps to write the components of the astronomical unit in galactic coordinates, as 

illustrated in Figure 4.  

 
Figure 4: Components of the solar system plane in galactic coordinates. 

 

 The Galactic Potential

 To make an estimation of the galactic tidal field, we need to begin by defining an 

expression for the gravitational potential of the Milky Way galaxy. The most reasonable 

estimates for the galactic potential are found from the collective position and velocity 

measurements of the visible stars and neutral hydrogen gas clouds in the galaxy. This can 
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provide us with a velocity-rotation diagram (Figure 5)[8], which is related to the 

gravitational potential by the simple equation 

   
2

c g
mVF m

R
Φ F= = − ∇ =         (3) 

which balances the centrifugal and gravitational forces, although this has the weakness of 

using circular orbit approximations. An expression for Φ can be found by rearranging the 

above equation and integrating. Φ can also be used to generate a density profile and total  

mass estimate for the galaxy via a combination of Poisson’s equation and the divergence 

theorem: 

               (4) 3 2 3

V V S
4 GM 4 G d x d x d Sπ π ρ Φ Φ= = ∇ = ∇∫∫∫ ∫∫∫ ∫∫ 2⋅

 

 
Figure 5: Velocity-Rotation diagram of the Milky Way, From Jones & Lambourne, 

2004[8]. The data points represented in this figure are hydrogen gas cloud 

measurements. 
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 Models for the gravitational potential of the galaxy are usually designed to fit 

both the observed velocity-rotation profiles and luminosity functions, as closely as 

possible. The galactic potential used in the following analysis is from a paper by Helmi & 

White, 2001[7]. 

Table 2: Components of the Galactic Potential, Helmi & White, 2001[7] 

Bu lg e Disk HaloΦ Φ Φ Φ= + +  

Bu lg e 2 2 2Disk
Halo2 2 2 2 2 2

GM GM
(R, z) V ln(R z d )

c R z R (a z b )
Φ = − − + + +

+ + + + +

2  

Where the following constants are used, 

Table 3: Parameters for the Galactic Potential, Helmi & White, 2001[7] 

10
Bu lg e

11
Disk

1
Halo

M 3.4 10 M a 6.5 kpc
M 10 M b 0.26 kpc

V 131.5 kms c 0.7 kpc
d 12 kpc

 

  
 

−

= × =
= =

= =
=

�

�  

 Here, Φ is divided into three components. A pseudo-hyperbolic Hernqvist bulge 

component is used to model the central bulge region of the galaxy. The disk component 

of the galactic potential is modelled using one form of the standard Miyamoto-Nagai disk 

potential. Finally, a logarithmic halo component is added to more closely match the 

information given in velocity-rotation diagrams. The halo component is linked to the 

infamous dark matter problem that plagues current understanding of galactic 

astrophysics. The functions for the separate components of the potential are plotted in 

Figure 6.  

The constants provided with the equation of Φ represent scale masses and scale 

heights for our particular model, although the halo component is scaled with a velocity 

squared parameter. This is one of the simplest analytic models for the galactic potential 

available, although I also performed calculations of the galactic tidal field using the 6 

component potential given in Flynn, Sommer-Larsen & Christensen, 1996[5].  

These expressions for Φ are only written as a function of R and z, thus neglecting 

θ dependent aspects of the galactic potential such as spiral arms. This merely reflects the 

fact that potential functions such as these are derived from velocity-rotation diagrams 

which use circular orbit approximations. 
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+0.1563 kpc2Myr-2

 
-0.1563 kpc2Myr-2

Figure 6: Bulge(red), Disk(blue) and Halo(green) components of the gravitational 

potential of the Milky Way in the central plane of the galaxy (z=0).  
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+0.1563 kpc2Myr-2

 
-0.1563 kpc2Myr-2

Figure 7: The total gravitational potential of the Milky Way as a function of R in the 

plane of the galaxy.  

It is beneficial now to convert GMBulge, GMDisk and V2
Halo into units that are easier 

to work with, which will make the calculations a little easier. These quantities are 

converted into the elegant units of kpc3Myr-2 in the following manner: 

 12



10 11 3 2 1 13 1 2

Bu lg e 16 1 3

3 2

11 11 3 2 1 13 1 2

Disk 16 1 3

(3.4 10 M )(1.327 10 km s M )(3.156 10 sMyr )
GM

(3.086 10 kmkpc )
0.153kpc Myr

(10 M )(1.327 10 km s M )(3.156 10 sMyr )
GM

(3.086 10 kmkpc )
0.4

             

           

− − −

−

−

− − −

−

× × ×
=

×

=

× ×
=

×

=

� �

� �

3 2

1 2 13 1 2
2 2 2
Halo 16 1 2

50kpc Myr
(131.5kms ) (3.156 10 sMyr )V 0.018kpc Myr

(3.086 10 kmkpc )

−

− −
−

−

×
= =

×

       (5) 

Written with these units, the galactic potential is plotted as a function of R, with 

z=0 in Figures 6 and 7. Figure 6 displays the relative contributions to the potential of the  

different components. Figure 7 shows the sum of all three components and so represents 

the total potential of the galaxy as a function of R. The Sun’s minimum and maximum 

values of the galactocentric radius are also indicated on the plot to provide some 

reference to its location within the galactic potential. 

 Given a function for the scalar potential, we can find the gravitational field , 

which represents the gravitational force per unit mass. We find an expression for the 

gravitational field vector of the galaxy by taking the negative gradient of Φ(R,z): 

F
r

�F (R, z) R
R z

zΦ Φ
Φ

ur
$∂ ∂

= −∇ = − −
∂ ∂

 

  

�
2 2 1/ 2 2

Bulge Disk Halo
2 2 22 2 2 2 2 2 2 3/ 2

2 2 1/ 2 2 2 2 2 1/ 2 2
Bulge Disk Halo

2 2 22 2 2 2 2 2 2

GM (R z ) R GM R 2V R R
R z d(c R z ) (R (a z b ) )

GM (R z ) z GM (a z b )(z b ) z 2V z z
R z d(c R z ) R (a z b )

$

−

− −

⎡ ⎤+
= − − −⎢ ⎥

+ ++ + + + +⎢ ⎥⎣ ⎦
⎡ ⎤+ + + +⎢ ⎥+ − − −

+ +⎢ ⎥+ + + + +⎣ ⎦

 (6) 

The gravitational field of the galaxy is plotted on the following pages, where the 

function in Figure 8 represents the gravitational field strength as a function of R, when 

z=0. This is scaled against the gravitational field strength as a function of z, where 

R=9.095, the mean galactocentric radius of the Sun’s orbit, which is plotted below in 

Figure 9. 
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+0.1563 kpcMyr-2

 
-0.1563 kpcMyr-2

Figure 8: R component of the Galactic Gravitational Field as a function of R in the 

plane of the galaxy (z=0).  
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+0.1563 kpcMyr-2

 
+0.1563 kpcMyr-2

Figures 9: z component of the Galactic Gravitational Field with respect to the 

coordinates (9.095,z). 
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The Galactic Tidal Field

The tidal field of the Milky Way is then found by calculating the second partial 

derivatives of the gravitational potential with respect to R and z:  
2 2 1/ 2 2 2 2 1 2 2 2 3 / 22

Bu lg e
2 2 2 3

2 2 2 2 2 2 2 2
Disk Halo

2 2 2 22 2 2 2 5 / 2

2 2 1/ 2 2 2 1/ 2 2 2 12
Bu lg e

2

GM (1 c(R z ) 3R (R z ) cR (R z ) )
R (c R z )

GM ( 2R (a z b ) ) 2V ( R z d )
(R z d )(R (a z b ) )

GM Rz((R z ) c(R z ) 2(R z ) )
R z (c R

Φ

Φ

− − −

− −

+ + − + − +∂
=

∂ + +

− + + + − + +
+ +

+ ++ + +

+ + + + +∂
= −

∂ ∂ + + 2 3

2 2 1/ 2 2 2
Disk Halo

2 2 2 22 2 2 2 5 / 2

2 2 1/ 2 2 2 2 1 2 2 2 3 / 22
Bu lg e

2 2 2 3

2 2 2 1/ 2 2
Disk Disk

2 2 2 2 5 / 2

z )
3GM Rz(1 a(z b ) ) 4V Rz

z R(R z d )(R (a z b ) )
GM (1 c(R z ) 2z (R z ) cz (R z ) )

z (c R z )
3GM z (1 a(z b ) ) GM (1

(R (a z b ) )

Φ

Φ

−

− − −

−

+ + ∂
− − =

∂ ∂+ ++ + +

+ + − + − +∂
=

∂ + +

+ + +
− +

+ + +

2 2 1/ 2 2 2 2 3 / 2

2 2 2 2 3 / 2

2 2 2 2
Halo

2 2 2 2

a(z b ) az (z b )

(R (a z b ) )
2V (R z d )

(R z d )

− −+ − +

+ + +

− +
+

+ +

)

        (7) 

 These can be summarized in a 2×2 symmetric matrix, which we shall call , the 

tidal force matrix. The Φ

�T

RR and Φzz terms represent tidal stretching in R and z directions 

respectively. ΦRz terms mainly represent a shear or torsion in the tidal field, as explained 

by Dr. David Hobill at the University of Calgary[12].  can be used to find tidal 

accelerations 

�T

x
x

Fa
x

δ
∂

= −
∂

r

Δx        (8) 

by the operation 

R RR Rz

z Rz zz

a R
a z

δ Φ Φ Δ
δ Φ Φ Δ

⎛ ⎞ ⎛ ⎞ ⎛
=⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠⎝ ⎠ ⎝ ⎠

⎞
⎟        (9) 

δaR and δaz are the tidal accelerations in the R and z directions respectively, and ΔR and 

Δz are the components of a solar system orbit in galactic coordinates. In the case of the 

Earth’s orbit 

R cos i 1AU, z sin i 1AU     Δ Δ= × = ×            (10) 
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Modelling Galactic Tidal Field Variations

 Now that we have a mathematical expression for the tidal field of the galaxy, we 

perform a series of calculations to model the effects of the galactic tides on the solar 

system as it moves through the galaxy over time. With each successive model, the 

situation becomes more realistic, but the mathematics more complex. Doing a simpler 

model first is a good place to start. 

Model (I): The first model uses a hypothetical orbit that uses the Sun’s equation of 

motion for R(t) but never leaves the plane of the galaxy (z=0 always), This annihilates the 

off diagonal terms of the tidal field matrix and makes it relatively easy to model the 

varying galactic tidal field strength as a function of time. So using the conditions z=0 and 

R(t)=9.095-0.6375cos(2π(t-15)/154) we plot ΦRR(t) and Φzz(t) over the last 601 million 

years using Mathematica (Figures 10&11).  

 
ΦRR(Myr-2) 

 
Figure 10: ΦRR as a function of time over the last 601 million years, for our first 

model orbit of a star in the galactic plane. 
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Φzz(Myr-2) 

 
Figure 11: Φzz as a function of time over the last 601 million years, for our first 

model orbit of a star in the galactic plane. 

The plots shown in Figures 10 & 11 display tidal field strength increasing and 

decreasing with the solar radial oscillation period of 154 million years. Also plotted on 

these graphs, on top of the original function, is a fit function, f(t). The fitting process 

involves evaluating the functions at the extrema and constructing a cosine function which 

approximates and simplifies the expression: 

RR max RR min RR max RR min min Rf (t) ( ) ( )cos(2 (t t ) / P )½ ½Φ Φ Φ Φ π= + + − −       (11) 

Often times the fit function matches the original, more complicated function so 

well, the plot looks like one curve. In subsequent calculations, the fit function will allow 

us to integrate more easily with respect to time. For the fit functions in the first model, we 

write: 

             (12) 

4 2 5 2
RR

Rz
2 2

zz

(t) 5.76 10 Myr 6.08 10 Myr cos(2 (t 15Myr) /154Myr)
(t) 0

(t) 0.00846Myr 0.00114Myr cos(2 (t 15Myr) /154Myr)

Φ π
Φ

Φ π

− − − −

− −

= − × − × −
=

= + −
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Tidal accelerations can be found by: 

R RR RR

z zz zz

a (t) (t) R cos i (t) 1 AU
a (t) (t) z sin i (t) 1 AU

  
   

δ Φ Δ Φ
δ Φ Δ Φ

= = ×
= = ×

        (13) 

 As shown in Figures 10&11, the δaz(t) function is about 33 times larger in 

amplitude and so the tidal forces are much stronger in the z direction than in the R 

direction. In this model, we can conclude that overall tidal acceleration is primarily due to 

the Φzz(t) function. 

Model (II): Here we use a hypothetical orbit of a star that remains at the Sun’s mean 

galactocentric radius of 9.095 kpc and undergoes vertical oscillations according to the 

Sun’s equation for z(t). Substituting these conditions into the second partial derivatives of 

the potential, we get the plots seen in Figures 12,13&14.  

 
ΦRR(Myr-2) 

 
Figure 12: ΦRR as a function of time over the last 139 million years, for our second 

model orbit with vertical oscillation at constant R.  
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ΦRz(Myr-2) 

 
Figure 13: ΦRz as a function of time over the last 139 million years, for our second 

model orbit with vertical oscillation at constant R. 

 

 

 

 

 

 20



 
Φzz(Myr-2) 

 
Figure 14: Φzz as a function of time over the last 139 million years, for our second 

model orbit with vertical oscillation at constant R.  

In Figures 12 & 14 we see a function related to the Sun’s vertical oscillation half 

period of 33 million years, which represents the period of time between successive 

galactic plane crossings. Again, these complicated functions were fitted with a simpler 

cosine function using the same method as before. The fit functions are overlayed in the 

plots shown in Figures 12 to 14 and are expressed by the following equations:  

            (14) 

4 2 7 2
RR

2
Rz

2 4 2
zz

(t) 5.70 10 Myr 6.36 10 Myr cos(2 (t 2.1Myr) / 33Myr)

(t) 0.00117Myr sin(2 (t 2.1Myr) / 33Myr)

(t) 0.00773Myr 1.78 10 Myr cos(2 (t 2.1Myr) / 33Myr)

Φ π

Φ π

Φ π

− − − −

−

− − −

= − × − × +

= − +

= + × +
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Once again, comparing the strengths of the oscillatory terms suggests that the 

Φzz(t) function, being about 280 times larger in amplitude, dominates over ΦRR(t). Thus 

we can conclude that this will have a greater effect on the solar system, and we 

approximate the overall tidal acceleration with δaz(t). The ΦRz(t) function is also large in 

amplitude but mainly represents a form of tidal shear and not a significant tidal stretching 

in this case [12].  

Model(III): Here both the R(t) and z(t) oscillatory motions of the Sun with respect to the 

local standard of rest of radius R=9.095 kpc are folded into the expressions for ΦRR, ΦRz 

and Φzz. The time varying second partial derivative functions and their fit functions are 

plotted in Figures 15,16 & 17.  
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ΦRR(Myr-2) 

 
Figure 15: ΦRR as a function of time over the last 601 million years for our model 

orbit that approximates the solar system’s motion.  
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ΦRz(Myr-2) 

 
Figure 16: ΦRz as a function of time over the last 601 million years for our model 

orbit that approximates the solar system’s motion.  
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Φzz(Myr-2) 

 
Figure 17: Φzz as a function of time over the last 601 million years for our model 

orbit that approximates the solar system’s motion. 

The fit functions in these plots are simply the sums of the fit functions for the first 

two models. The fact that the sum of the fit functions from Model(I) and Model(II) 

matches quite closely the actual Φzz(t) function of Model(III) suggests that this 

component of the galactic tidal field can be modelled reasonably well by a linear 

combination of the fit functions from the first two model orbits. The Φzz(t) function 

dominated over ΦRR(t) for both of these cases, and so we use the last Φzz(t) function to 
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get a reasonable approximation of the overall tidal acceleration function for the solar 

system’s motion in the galaxy over time. 

 

 Calculation of Magnitudes of Tidal Deformation

 Many physicists dismiss galactic tidal influences on the solar system as negligible 

due to the magnitudes involved. If we compare the gravitational field at the Earth’s orbit 

due to the Sun, approximately 5.93×10-3 ms-2, to the gravitational field at the solar 

system’s current position due to the galaxy, 3.33×10-10 ms-2, the effect of the galaxy 

seems miniscule. The zz component of the galactic tidal field at the solar system’s current 

position has a magnitude of 8.07×10-30 s-2, which is incredibly slow by the standard that 

scientists are used to dealing with. However, galactic tidal forces should not be negated 

entirely due to the enormous timescales on which galactic tidal forces exert their 

influence. Having determined how the galactic tidal forces act on the solar system over 

time, we can now get a rough estimate for the magnitude of the change in the Earth-Sun 

distance. This calculation is performed using the assumption that the solar system 

behaves like a system of free particles with no interaction between the particles in the 

system. An example of this would be a ball of dust floating in space. As opposed to 

treating the solar system like a system of bound particles to which it most definitely is. 

Nonetheless, we need to follow this assumption here to make the calculation possible and 

we will describe the limitations resulting from this assumption after the calculation.  

So we will calculate a tidal deformation from the largest contributing components, 

the Φzz(t) terms, of our first two model star orbits. Because the Φzz results from 

Model(III) can be approximated by a linear combination of Models (I) and (II), we can 

study the overall tidal deformation by looking at the Model(I) and Model(II) 

contributions individually. And so for the first case, we can estimate the tidal deformation 

in the z direction for the radially oscillating orbit of Model(I) from the presently 

approaching tidal maximum, 15 Myr into the future, to the last tidal minimum, 

approximately 62 Myr in the past, by subtracting the mean term from Φzz(t) and 

integrating the oscillatory term twice with respect to time. The first integration transforms 

the acceleration into a speed, and the second transforms the speed into a distance. 
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62 62 2
zz15 15

62 62 2 2

15 15

z sin i 1 AU (t)(dt)
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To make the integration easier without changing the total value of the integral, we decide 

to change the phase with the substitution τ = t – 15. 

       (15) 
�

[ ]

77 77 2 2

0 0
772

0

z 0.868 AU 0.00114Myr cos(2 /154Myr)(d )

0.868 AU 0.00114(154 / 2 ) cos(2 /154Myr) 1.19 AU

δ πτ

π πτ

 

     

− − −

−

=

= × − =
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In the second integration we evaluate the tidal deformation from the last local 

tidal maximum, approximately 2.1 Myr ago, to the last local tidal minimum, 

approximately 18.6 Myr ago, with the tidal field function from the second model orbit. 
18.6 18.6 2

zz2.1 2.1

18.6 18.6 2 4 2

2.1 2.1

z sin i 1 AU (t)(dt)

0.868 AU [0.00766Myr 2.51 10 Myr cos(2 (t 2.1Myr) / 33Myr)](dt)

δ Φ

π

  

 

− −

− −

− − − − −

− −

= ×

= + × +
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∫ ∫

Here we change the phase of the integral with the substitution τ = t + 2.1. 
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∫ ∫

The constant terms, 0.00846Myr-2 and 0.00766Myr-2, need to be left out of the integration 

because otherwise this would treat the solar system as if it were in free fall, to which it is 

not. We integrate the cosine terms by themselves and thus measure the tidal deformation 

using the Sun’s oscillatory motion alone. 

The results we arrive at are 1.19 AU and 0.0120 AU. However, in the first case, 

since the tidal deformation is greater than the astronomical unit this means that the Earth 

would have been closer to the Sun than the planet Venus is today. This is impossible 

given what the evidence from the geological record suggests. Undoubtedly, the 

unrealistic results seen in these calculations are a consequence of treating the solar 

system as a ball of dust with no interaction between the particles in the system. 

Nonetheless, we have shown that the solar system is immersed within the galactic tidal 

field, and the magnitude of the resulting change to the Earth-Sun distance on large 

timescales remains to be calculated rigorously. 
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Discussion of Uncertainties and Assumptions  

To make the calculations in this report possible, the model we used for the 

galactic potential was also simplified by neglecting θ dependent phenomena like spiral 

arms. This was necessary in this preliminary model because θ dependent potentials 

greatly increase in complexity and can no longer be described using analytic functions. 

Adding θ dependence into the potential is also difficult due to the uncertainty and lack of 

understanding about galactic spiral structure. Some commonly used θ-dependent 

potentials are discussed in graduate-level texts. 

 It is also quite evident that i, the inclination angle is bound to change over time 

because of the differential influence of the tides in different directions. Therefore this 

calculation loses its accuracy as the timescale increases and the solar system changes its 

orientation in the galaxy. Not to mention the fact that the solar system actually has a 

three-dimensional representation in galactic coordinates and the galactic center is not far 

in the sky from the intersection of the plane of the Milky Way and the ecliptic. This 

means that for the triangle representing the orientation of the solar system shown in 

Figure 4, the triangle should actually be pointed mainly in the Δθ direction instead of the 

ΔR direction. We didn’t take this three-dimensional approach in the calculation because it 

would have to involve bringing θ dependence into the potential. However, it is important 

to mention that this does not change the current value for Δz, which is derived directly 

from the North Galactic Pole’s ecliptic latitude, and is the component of the solar system 

most affected by galactic tidal forces in the models we used. 

 

Conclusion 

The question of whether or not galactic tidal perturbations affect the solar system 

to any noticeable degree will have to rest upon further research using more thorough 

calculations. In this case, future models of the solar system’s motion in the galaxy should 

also account for θ dependent phenomena like the spiral arms of the galaxy, which 

although more complex, will help to provide a more accurate estimate of the local 

galactic tidal field and its influence on the solar system. The other variable that future 

research in this field will undoubtedly have to account for is the interaction between 

bodies in the solar system. This will provide a better estimate for the magnitudes of 
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galactic tidal influences on the solar system, at the risk of making the calculations slightly 

more complex. 

However, if galactic tidal forces have a significant influence on orbits in the solar 

system, this may have implications for comet activity, climate, and consequently the 

evolution of life on earth and other planets. In this case, it may even be possible to use the 

geological record to learn information about our galaxy that we cannot see with our eyes 

and our telescopes. Our spaceship, the Earth, has been travelling through the cosmos for 

much longer than we as humans have been able to make detailed astronomical 

observations of our galaxy. Over the enormous timeframe of geological history, the 

geological record has acted like a flight recorder for the spaceship, preserving vital 

information about our planet’s journey through the Milky Way. In this case, the 

geological record is a vast and invaluable resource, a tape that has been running for 

millions and billions of years that may shed light on things that have so far been hidden 

from view. 
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Appendix 

 
Figure 18: The last 70 million years of global climate, palaeotemperature data 

derived from oxygen isotope analysis of benthic foramnifera. Data from Miller et al. 

1987[9], using 680 measurements and then applying a 10 Myr moving average to the 

sample. The X’s denote times of galactic plane crossings (local tidal maxima) and 

O’s denote times of maximum vertical heights above and below the galactic plane 

(local tidal minima) as defined by F. Bash, 1986. 
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Figure 19: Paleotemperature over the last 250 million years estimated from oxygen 

isotope analysis of fossils. Data is from Veizer et al, 2004[10] using over 13,000 

measurements of a variety of fossil organisms, and then applying a 10 Myr moving 

average to the sample. The X’s denote times of galactic plane crossings (local tidal 

maxima) and O’s denote times of maximum vertical heights above and below the 

galactic plane (local tidal minima) as defined by F. Bash, 1986. Could this be related 

to the Solar System’s motion in the Galaxy? 
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